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THERMODIELECTRICAL ANALYSIS

VI. Bentonites
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The paper presents an application of thermodielectrical analysis in a geological material of
industrial interest (bentonites). Thermodielectrical curves show noticeable differences in
dependence of the cationic content and chemical nature of the cations, and also, with the cation
position in the lattice.

The term bentonite was first applied by Knight to a particular, highly colloidal,
plastic clay found near Fort Benton in the cretaceous beds of Wyoming [1]. This
clay is formed by the alteration of volcanic ash in situ and is largely composed of
smectite clay minerals (montmorillonite, beidellite, nontronite, etc.).

DTA curves of smectitic minerals are quite different due to substitutions in the
lattice. The dioctahedral minerals present two zones thermally active, the first
between 100 and 300° where there occurs the loss of adsorbed water and the water
associated with exchangeable cations, and a second zone between 500 and 1000°
where the dehydroxylation, collapse and structural change of the mineral [2-5] take
place.
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Experimental

Materials

The tested samples were selected from “Managua” deposit (Havana City
province) and “La Tagua” manifestation (Guantanamo province) situated in the
occidental and oriental region of Cuba, respectively.

Methods

X-ray diffraction, thermal analysis, infrared spectroscopy, electron microscopy
and thermodielectric analysis were carried out. A DRON-2.0 diffractometer,
MOM-1500 derivatograph, IR-71 Carl Zeiss spectrophotometer, JEM-
100 s JEOL electronic microscope and scanning thermodielectric equipment
[6] were applied. Also chemical analysis and cation exchange capacity were fulfilled.

Experimental conditions of the thermal analysis were the following: Sample
weight: 800 mg, reference material: aluminium oxide annealed; thermocouples:
Pt/Pt (10%)-Rh, sampie holders: ceramic crucibles, heating rate: 10 deg/min,
furnace atmosphere: air, without any current or turbulence, TG sensitivity:
200 mg.

In the case of X-ray diffraction, patterns were recorded using a goniometer rate of
1/2 deg/mm (26), soller: 1.5° Cu(K,) radiation, angular range: 5-35° (20), time
constant: 2 sec, sensibility: 1000 imp/sec, voltage: 35 kV and anodic current:
20 mA. X-ray intensities were recorded on strip chart recorder at 200 mm/h.

IR spectra in the range 4004000 cm ~ ! were recorded with 0.2 mg sampie weight
in KBr pellets. The observations by electronic microscopy were carried out on
samples dispersed in butyl alcohol. Thermodielectric curves were carried under the
same conditions described in [6]. Clay fractions { <2.0 um} were obtained using the
classical levigation procedure. Clay specimens for XRD were prepared by applying
the clay on glass slides (oriented aggregates (OA)) using a filter-membrane peel
technique [7]. The amount was then dried in air and later saturated with ethylene
glycol empioying a vacuum pump [8]. Finally, the OA were heated to 600° for
1 hour. In the case of Managua samples it was necessary to saturate with LiCl [9], to
differentiate between montmorillonite, beidellite or interstratified mineral.

The results obtained by XRD, and by derivatograph (DA), infrared spectroscopy
(IR) and electron microscopy (EM) are presented in Table 1 also, chemical analysis
and cation exchange capacity are presented in Tables 2, 3 and 4.
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Table 3 Cation exchange capacity results (meg/100 g) of “Managua” (M-1 to M-3) and “La Tagua”
(7-2 and T-8) samples

Sample number Ca?* Mg+ Na™* K* Y Ca?*,Mg?*, Na*, K*
M-1 63.07 16.06 0.086 0.012 79.21
M=-2 45.43 15.69 0.057 0.012 61.17
M-3 64.68 17.32 0.053 0.021 82.09
-2 19.94 25.72 0.01 0.12 45.79
-8 26.24 28.96 0.01 0.07 55.31

Table 4 Cationic contents of calcium and magnesium total, exchangeable and non-exchangeable (in

percent)
Sample 2+ 24 Ca?* - . Mg**
number Ca?* (total) Ca?”* (exch.) (non-exch.) Mg2™ (total) Mg?" (exch.) (non-exch.)-
T2 0.92 0.40 0.52* 2.31 0.31 2.00
7-8 0.55 0.52 0.03 2.52 0.35 2.17
M-1 1.50 1.26 0.24 1.31 0.19 1.11
M-2 1.52 0.91 0.61* 1.41 0.19 1.22
M-3 1.54 1.29 0.25 1.44 0.21 1.23

* Small amounts of calcite (CaCO,).
** Non exchangeable positions are structural positions.

Resuits and discussion

Dielectric curves are presented in Fig. 1. Thermodielectric curves show two
noticeable effects (it was discussed in connection with zeolites [11]). The first is
related with the polarization of cations and water (temp. 100-200°), and the second
is related to ohmic conductivity which is a function of the cationic transport in the
aluminosilicate lattice (temp. > 550°). Both effects are related to the cationic content
and chemical nature of the cations, and also, to the cation position in the lattice.

Samples M-1, M-2 and M-3 are characterized by cation exchange capacities
between 61 and 82 meq/100 g (see Table 3) with Ca%™ as the principal exchangeable
cation in relation to exchangeable Mg2* (TAble 4). Also, in samples 7-1 and 7-2
the amount of exchangeable Ca2* and Mg?* is similar, however, the Mg2?* is
fundamentally in structural position (non-exchangeable). The higher content of
Ca?™ in exchangeable position explains why the first peak in M samples (M-I,
M-2, M-3)is more intensive than those T'samples (72, T-8), due to the mobility of
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exchangeable cation Ca?* . This result can be also supported by the very well known
fact that in smectitic minerals, the hydration capacity is related to exchangeable
Ca?* contents [1]. On the other hand the second peak position is related to cationic
conduction as was stated elsehwere [11]. Figure 1 shows that the temperature for the
second peak is higher for 7 samples than for M samples. This fact can be directly
correlated to the higher exchangeable cationic contents in M samples.
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Fig. 1 Dielectrical curve of Bentonites from ‘“Managua” (M-1, M-2 and M-3) and “La Tagua” (T-1
and T-2) deposits

30 200 400 600

T-2 has an anomalous behaviour, which can be explained by taking into account
the lower aluminium contents of 7-2 compared to 7-8. For aluminium is the
element which ties exchangeable cations to the aluminosilicate structure, due to the
negative charge excess generated by aluminium in aluminosilicate crystal lattice of
smectite type mineral, and therefore cationic conduction is higher.
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